ارتباط میان ساختار یک گروه متناهی و خواص گراف اول آن

پایان نامه
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارتباط ساختار گروه با گراف اول و کاربرد آن در شناسایی پذیری گروه

فرض کنید g یک گروه متناهی و (g) پی مجموعه تمام اعداد اول شمارنده قدرمطلق g باشد. با استفاده از مفهوم مرتبه عنصر در گروه نظریه گرافها و گروهها را به صورت زیر به هم ارتباط می دهیم: گرا اول gk(g) از گروه منتاهی g گرافی است که (g)پی مجموعه راسهای آن است و دو عنصر p و q را توسط یک یال به هم وصل می کنیم اگر و تنها اگر گروه g شامل عنصری از مرتبه pq باشد. مجموعه مرتبه عناصر یک گروه را با (g) امگا نمایش...

15 صفحه اول

درباره برخی خواص گراف توانی وابسته به یک گروه متناهی

فرض کنیم g یک گروه متناهی باشد. به گروه g یک گراف ساده وابسته می کنیم که آن را گراف توانی وابسته به g می نامیم و با نماد p(g) نشان می دهیم. در این گراف مجموعه راسها عبارت است از g و دو راس متمایز ما نند x و y زمانی توسط یک یال بهم وصل میشوند که یکی توانی از دیگری باشد. در این پایان نامه می خواهیم بعضی خواص گراف توانی وابسته به گروه متناهی g را مطالعه کنیم به خصوص عدد درختی p(g) برای بعضی از گرو...

گراف ناجابجایی نسبی یک گروه متناهی

در این پایان نامه ضمن بررسی خواص اساسی گراف ناجابجایی یک تعمیم از آن به صورت زیر ارایه می شود.

اندیس های سگد و همبندی از گراف ناجابجایی در گروه های متناهی

فرض کنیم g یک گروه ناآبلی باشد. گراف ناجابجایی $gamma_g$ از g تعریف می شود با مجموعه رئوس g و دو عضو از آن تشکیل یال می دهد اگر باهم جابجا نشوند. در این مقاله ما بعضی از خواص این گراف و ac -گروه n -منظم را معرفی می کنیم. سپس فرمولی برای اندیس سگد گراف ناجابجایی یک گروه متناهی بر حسب اندازه های n و z(g) و g بدست می آوریم. همچنین مشخص می کنیم مقدار اندیس همندی برای هر گروه متناهی برحسب k(g) و اند...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید بهشتی - دانشکده علوم

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023